## Activity Report: Slovakia

## Institute and researchers

Researchers on JEM EUSO

- K. Kudela
- P. Bobik
- S. Pastircak
- J. Urbar (cooperating)
- Tatiana measurements analysis
- Huge background trigger simulations on KE PC cluster

# Tatiana measurements archive http://space.saske.sk/JEM/tatiana.html

### To visualize Tatiana UV measurements and create reference frame for future use.

Ak http://space.saske.sk

- in internal JEM-EUSO part http://space.saske.sk/JEM.

*User: jemeuso Password: same as for RIKEN JEM-EUSO site* 

 $\sim$ 7000 measurements of Universitetsky Tatiana satellite at  $\sim$ 25 000 figures (two types of figures)

Selection parameters

- Sun zenith angle
- Moon zenith angle
- length of one continuous measurement

### Tatiana measurements archive

Visualisation of data from ultraviolet (UV) detector on board the Universitetsky-Tatiana satellite [1][2][3][4] measured in period from January 2005 to March 2007.

Archive of figures - lists (tables) of continuous measurements

#### Figures with maps

For Sun zenit angle > 108

For Sun zenit angle > 108, 20 minutes and longer measurements

For Sun zenit angle > 135 AND Moon zenith angle > 90

For Sun zenit angle > 135 And Moon zenith angle > 90, 20 minutes and longer measurements

#### Example



#### Figures without maps

For Sun zenit angle > 108

For Sun zenit angle > 108, 20 minutes and longer measurements

For Sun zenit angle > 135

For Sun zenit angle > 135, 20 minutes and longer measurements

For Sun zenit angle > 135 AND Moon zenith angle > 90

For Sun zenit angle > 135 And Moon zenith angle > 90, 20 minutes and longer measurements

#### Example:



#### References

1. Garipov G. K., Khrenov B. A., Panasyuk M. I., Tulupov V. I., Shirokov A. V., Yashin I. V., Salazar H., UV radiation from the atmosphere: Results of the MSU Tatiana satellite measurements. Astroparticle Physics, Volume 24, Issue 4-5, p. 400-408, 2005

2. Garipov G. K., Panasyuk M. I., Tulupov V. I., Khrenov B. A., Shirokov A. V., Yashin I. V., Salazar H., Ultraviolet flashes in the equatorial region of the Earth, Journal of Experimental and Theoretical Physics Letters, vol. 82, issue 4, pp. 185-187, 2005

3. Sadovnichy V. A. et. al., First results of investigating the space environment onboard the Universitetskii-Tatyana satellite, Cosmic Research, Volume 45, Issue 4, pp.273-286, 2007

4. Web http://cosmos.msu.ru

### Tatiana measurements archive ID:10, Sza > 108°, Date: 5 2 8 8 50 44 [y/m/d/h/min/sec]



## Tatiana measurements archive ID:10, Sza > 135°, Mza > 90°, Date: 5 2 8 8 50 44



## Tatiana measurements archive ID:108, Sza > 108°, Date: 5 3 8 15 31 26



## Tatiana measurements archive ID:108, Sza > 135°, Mza > 90°, Date: 5 3 8 15 31 26



## Tatiana measurements archive ID:142, Sza > 135°, Mza > 90°, Date: 5 3 14 17 2 34



### Stability coefficient

Stability of UV background clearly depend on Sun relative position to place of measurements i.e. on Sun zenith angle. It make sense then evaluate BG stability as function of Sun zenith angle threshold. To avoid moon light influence we select measurements where moon zenith angle Mza is higher than 90°.

- four different stability coefficients was tested
- as upper estimation coefficient based on ratio between maximum and minimum UV intensity values of measured periods
- stability coefficient based on standard deviation of UV signal during measured periods
- stability coefficient based on on curve length of UV signal graph during measured periods
- stability coefficient based on average absolute deviation of measurements

For selected Sza treshold (Sza> $x^{\circ}$ ) we evaluate average absolute deviation AAD of UV intensity signal during all continuous measurements.

$$AAD_{i, Sza>x^{\circ}} = \frac{1}{T_{i}} \sum_{j=1}^{j=(N_{i}-1)} \left| I_{UV, i, j} - \overline{I_{UV, i}} \right|$$

where  $T_i$  is lenght (time) of *i*-th measurements. Then stability coefficient for Sza>x<sup>o</sup> is

$$SC(Sza > x^{\circ}) = \frac{1}{T} \sum_{i=1}^{i=m} AAD_{i,Sza > x^{\circ}} N_i \text{ where } T = \sum_{i=1}^{i=m} N_i$$



### Stability coefficient

Different stability coefficient evaluate how UV light change during measurements on Earth orbit. From all coefficients we can see that stability of signal depend on Sun zenith angle, and change relatively fast till Sza reach 132°. This lead us to change (redefinition) of night definition for Tatiana orbit. Now we redefine night for orbit ~940 km as time when satellite local Sza>132°.

- Stability coefficient based on average absolute deviation show that stability of signal on the night side, when moon is under horizon is in order of 10ths percents from average value of UV intensity during measurement in previous/surrounding moments/orbit (flashes and TLE events are exception from this conclusion).
- Let us note that this results are evaluated from signal with flashes (TLE) events. Flashes was not cleaned from signal. If measurements with flashes will be cleaned out, stability increase.





### JEM-EUSO duty cycle 2005 - 2007 from real ISS trajectory



### JEM-EUSO duty cycle 2005 - 2007 from real ISS trajectory

We estimate a ISS duty cycle for UV background less than 1500 ph/(m<sup>2</sup> ns sr) from real ISS trajectory and moon light evaluation.

Estimation can be described in the following points:

1. We use ISS real trajectory data (one minute time positions-resolution) from 2005 till 2010 years [1].

2. For all ISS positions we eavaluate sun zenith angle ( $S_{ZA}$ ), moon zenith angle ( $M_{ZA}$ ) and moon phase  $(M_p)$  for time from 2005 till 2007 (same period as Tatiana observations was).

3. For every position,  $M_{ZA}$  and  $M_p$  UV light intensity  $I_{UV}$  in ph/(m<sup>2</sup> ns sr) was evaluated from next equation[2][3]:

$$I_{UV} = 16000 * \cos(M_{ZA}) * 10^{-0.4 * (0.16M_p + 5.5 * 10 - 6 * M_p^*)}$$
(1)

*Note:* equation (1) gives negative values for  $M_{ZA}>90^\circ$  - it simply means that moon is under horizon, so no moon light is present

4. From all data we evaluate a duty cycle for different sun zenith angles tresholds:

### Citations

- 1. http://sscweb.gsfc.nasa.gov/cgi-bin/sscweb/Locator.cgi
- 2. Montanet: EUSO-SIM-REP-009-1.2 (2004):
- 3. Krisiunas & Schaefer, Astrom. Soc. of the Pactifc, 103, (1993) 1033. Krisciunas

| Sza treshold [deg.] | Duty cycle [%] | S <sub>Z4</sub> treshold [deg.] | Duty cycle [%] |
|---------------------|----------------|---------------------------------|----------------|
| 90                  | 31.2712        | 131                             | 10.4016        |
| 91                  | 30.7674        | 132                             | 9.9813         |
| 92                  | 30.2658        | 133                             | 9.5706         |
| 93                  | 29.7663        | 134                             | 9.1542         |
| 94                  | 29.2756        | 135                             | 8.7378         |
| 95                  | 28.7827        | 136                             | 8.3462         |
| 96                  | 28.2934        | 137                             | 7.9544         |
| 97                  | 27.8049        | 138                             | 7.5829         |
| 98                  | 27.3158        | 139                             | 7.2075         |
| 99                  | 26.8283        | 140                             | 6.8476         |
| 100                 | 26.3317        | 141                             | 6.4949         |
| 101                 | 25.8452        | 142                             | 6.1453         |
| 102                 | 25.3461        | 143                             | 5.8096         |
| 103                 | 24.8433        | 144                             | 5.4817         |
| 104                 | 24.3137        | 145                             | 5.1692         |
| 105                 | 23.7518        | 146                             | 4.8620         |
| 106                 | 23.1724        | 147                             | 4.5451         |
| 107                 | 22.5994        | 148                             | 4.2396         |
| 108                 | 22.0198        | 149                             | 3.9317         |
| 109                 | 21.4447        | 150                             | 3.6299         |
| 110                 | 20.8674        | 151                             | 3.3272         |
| 111                 | 20.2907        | 152                             | 3.0375         |
| 112                 | 19.7127        | 153                             | 2.7868         |
| 113                 | 19.1333        | 154                             | 2.5635         |
| 114                 | 18.5709        | 155                             | 2.3600         |
| 115                 | 18.0170        | 156                             | 2.1667         |
| 116                 | 17.4682        | 157                             | 1.9819         |
| 117                 | 16.9216        | 158                             | 1.8106         |
| 118                 | 16.3977        | 159                             | 1.6473         |
| 119                 | 15.8720        | 160                             | 1.4907         |
| 120                 | 15.3608        | 161                             | 1.3449         |
| 121                 | 14.8700        | 162                             | 1.2047         |
| 122                 | 14.3917        | 163                             | 1.0748         |
| 123                 | 13.9231        | 164                             | 0.9491         |
| 124                 | 13.4657        | 165                             | 0.8325         |
| 125                 | 13.0105        | 166                             | 0.7245         |
| 126                 | 12.5648        | 167                             | 0.6219         |
| 127                 | 12.1099        | 168                             | 0.5306         |
| 128                 | 11.6789        | 169                             | 0.4441         |
| 129                 | 11.2452        | 170                             | 0.3659         |
| 130                 | 10.8270        |                                 |                |



## Cloudiness influence on UV signal atmosph. propagation

- Study of influence of actual cloud situation (cloud fraction and pool of 202 parameters) on the UV light Universitetsky Tatiana-1 orbital nightside measurements using International Satel. Cloud Climatology Project (ISCCP) datahttp://isccp.giss.nasa.gov
- Gridded Cloud Product Revised algorithm (D1) Resolution: 280km equal-area grid, 3hour, global, Spatial averages of DX quantities and statistical summaries, including properties of cloud types. Satellites are merged into a global grid. Atmosphere and surface properties from TOVS are appended.



ISCCP EQUAL-AREA MAP GRID

Figure 3.1. Equal-area map grid used for ISCCP data. The first and last thirteen cells are numbered for illustration.

## Visualization of generated 3hour-global 280km grid cloud map (ISCCP) with UV measurements (Universitetsky Tatiana)

