South Atlantic Anomaly influence to JEM-EUSO measurements

P. Bobik (bobik@saske.sk), M. Putis, S. Biktemerova, M. Bertaina, D. Campana, F. Fenu, F. Guarino, K. Kudela, T. Mernik, B. Pastircak, K. Shinozaki

XIII International Meeting of the JEM-EUSO Collaboration Tenerife, *Spain*, *jun 2013*

South Atlantic Anomaly (SAA)

- two different effects

a) production of higher UV background in atmosphere b) trapped particles (e⁻) passes through lenses, creating additional UV background in SAA

Previous simple estimation of SAA influence

- based on evaluation of total geomagnetic field (IGRF) and Tatiana 1 measurements

• IGRF field model – total magnetic field in nT

• IGRF field model – total magnetic field in nT :: black circle area with $B_{total} < 19500 nT$

• IGRF field model – total magnetic field in nT :: black circle area with $B_{total} < 20000 nT$

• IGRF field model – total magnetic field in nT :: black circle area with $B_{total} < 20500 nT$

• IGRF field model – total magnetic field in nT :: black circle area with $B_{total} < 21000 nT$

• IGRF field model – total magnetic field in nT :: black circle area with $B_{total} < 22000 nT$

Tatiana 1 UV BG measurements

• IGRF field model – total magnetic field in nT :: black circle area with $B_{total} < 23000 nT$

- To which energies / particles we (instrument) are sensitive?
- Effect is partly due to additional/higher UV BG created in SAA
- Conservative estimation we are not measure inside SAA, measurements inside SAA are excluded

$B_{total} \le 19500 \text{ nT}$

I _{Allowed} [ph/(m ² ns sr)]	$I_{SUN} + I_{BG} + I_{MOON} [\%]$	$\begin{split} & I_{SUN} + I_{BG} \\ + & I_{MOON} + & I_{SAA} [\%] \end{split}$
1000	19.26	19.22
1500	20.42	20.38
2000	21.43	21.38
5000	26.07	26.02
10000	32.21	32.14
15000	34.81	34.73
30000	34.84	34.77

$B_{total} \le 21000 \text{ nT}$		
I _{Allowed} [ph/(m ² ns sr)]	$I_{SUN} + I_{BG} + I_{MOON} [\%]$	$\begin{split} & I_{SUN} + I_{BG} \\ + & I_{MOON} + & I_{SAA} [\%] \end{split}$
1000	19.26	18.63
1500	20.42	19.75
2000	21.43	20.73
5000	26.07	25.23
10000	32.21	31.16
15000	34.81	33.67
30000	34.84	33.70

P < 21500 pT

$B_{total} \sim 21300 \text{ III}$		
$I_{SUN} + I_{BG} \\ + I_{MOON} [\%]$	$\begin{split} & I_{SUN} + I_{BG} \\ + & I_{MOON} + & I_{SAA} [\%] \end{split}$	
19.26	18.38	
20.42	19.49	
21.43	20.46	
26.07	24.90	
32.21	30.75	
34.81	33.22	
34.84	33.26	
	$\begin{array}{c} I_{SUN} + I_{BG} \\ + I_{MOON} [\%] \\ \hline 19.26 \\ 20.42 \\ \hline 21.43 \\ 26.07 \\ \hline 32.21 \\ \hline 34.81 \\ \hline 34.84 \end{array}$	

$B_{\rm ev} < 22000 \ \rm pT$

$B_{total} \le 20500 \text{ nT}$		
I _{Allowed} [ph/(m ² ns sr)]	$I_{SUN} + I_{BG} + I_{MOON} [\%]$	$\begin{split} & I_{SUN} + I_{BG} \\ + & I_{MOON} + I_{SAA} [\%] \end{split}$
1000	19.26	18.85
1500	20.42	19.99
2000	21.43	20.97
5000	26.07	25.52
10000	32.21	31.52
15000	34.81	34.06
30000	34.84	34.10

B _{total} < 22000 III		
I _{Allowed} [ph/(m ² ns sr)]	$I_{SUN} + I_{BG} + I_{MOON} [\%]$	$\begin{split} & I_{SUN} + I_{BG} \\ + & I_{MOON} + I_{SAA} [\%] \end{split}$
1000	19.26	18.04
1500	20.42	19.13
2000	21.43	20.07
5000	26.07	24.44
10000	32.21	30.18
15000	34.81	32.61
30000	34.84	32.64

$B_{terrel} \le 22500 \text{ nT}$

I _{Allowed} [ph/(m ² ns sr)]	$I_{SUN} + I_{BG} + I_{MOON} [\%]$	$\begin{split} & I_{SUN} + I_{BG} \\ &+ I_{MOON} + I_{SAA} [\%] \end{split}$
1000	19.26	17.70
1500	20.42	18.77
2000	21.43	19.69
5000	26.07	23.97
10000	32.21	29.60
15000	34.81	32.00
30000	34.84	32.03

$B_{total} < 23000 \text{ nT}$

- toten		
I _{Allowed} [ph/(m ² ns sr)]	$I_{SUN} + I_{BG} + I_{MOON} [\%]$	$\begin{split} & I_{SUN} + I_{BG} \\ + & I_{MOON} + & I_{SAA} [\%] \end{split}$
1000	19.26	17.36
1500	20.42	18.41
2000	21.43	19.32
5000	26.07	23.52
10000	32.21	29.04
15000	34.81	31.39
30000	34.84	31.42

$B_{total} < 24000 \text{ nT}$

I _{Allowed} [ph/(m ² ns sr)]	$I_{SUN} + I_{BG} + I_{MOON} [\%]$	$\begin{split} & I_{SUN} + I_{BG} \\ + & I_{MOON} + I_{SAA} [\%] \end{split}$
1000	19.26	16.77
1500	20.42	17.79
2000	21.43	18.66
5000	26.07	22.73
10000	32.21	28.07
15000	34.81	30.33
30000	34.84	30.36

$B_{total} \le 20000 \text{ nT}$

I _{Allowed} [ph/(m ² ns sr)]	$I_{SUN} + I_{BG} + I_{MOON} [\%]$	$\begin{split} & I_{SUN} + I_{BG} \\ &+ I_{MOON} + I_{SAA} [\%] \end{split}$
1000	19.26	19.04
1500	20.42	20.19
2000	21.43	21.18
5000	26.07	25.78
10000	32.21	31.84
15000	34.81	34.41
30000	34.84	34.44

Conclusion for SAA effect to DC from simple approach

- Conservative estimation of South Atlantic Anomaly effect to JEM-ESUO operational efficiency lead to reduction of allowed time of measurements by 0.7%-0.9%.
- To verify SAA effect we need to know/estimate to which particles (energies) we are sensitive
 - Galactic cosmic rays?

Galactic cosmic rays

 Hypothesis: GCR create additional UV BG

- was already tested in Advances in Space Research [1] article for all Earth surface except SAA

- now simulation also for SAA
- even we think that this will be not _____ main/big effect, we provide simulation in SAA

[1] Distribution of secondary particles intensities over Earth's surface: Effect of the geomagnetic field, Advances in Space Research, 50, 7,986-996, 2012

UV light intensity at the top of the atmosphere for albedo 100%. For albedo 0% UV light in 300–400 nm (number of photons in (m² s sr)⁻¹) will have half values.

Galactic cosmic rays 20 15 R=4.1GV 10 Simulation 5 R=4.2GV - for every point (geographical place) R=4.3GV GSM R=4.4GV R=4.5GV on latitude "line" crossing a SAA -5 R=5.0GV and we evaluate -10 -15 k=4.0GV - 576 directions R=20GV -20 -15 -10 -5 Ó 5 10 15 - for every directions 20 000 energies X_{GSM} -~10 million trajectories for 3 one point 2 1 0 SM - longitudes 0° and 300° -2 Model GeoMag -3 -4 www.geomagsphere.org -5

-3

-2

 $X_{\rm GSM}$

Vertical cutoff rigidities

Vertical cutoff rigidities

www.geomagsphere.org

Intensities from asymptotic directions (vertical approach)

Lomnicky Stit NM, Tsyganenko96

Intensities from asymptotic directions (multidirectional approach)

Vertical vs. All directions

Conclusion : Not reasonable influence from GCR

- Airglow UV BG production is higher in SAA - AURIC presentation - dynamical : intensity change in time and border of SAA change

Trapped particles : e⁻

Trapped electrons influence

- SPENVIS AE-8 model : producing a data (trapped e⁻ intensities) for generated ISS orbit
- effect of those e⁻ to JEM-EUSO lenses : How many UV photons are created ?
- GEANT4 simulation

SPENVIS : generated ISS like orbit

SPENVIS : traped electrons along orbit for 1 month

JEM-EUSO orbit - e⁻ Solar maximum

90

e- at ISS orbit, SPENVIS AE-8 model

10.2 10/3 10^4 1D/5

Integral spectrum over 0.60 MeV

10^6

e- at ISS orbit. SPENVIS AE-8 model

Transmission-propagation function

Simulation for 0°, 35° (close to max. production) and 70°. Inclination to main optics axis for

10⁴ electrons 0.1 MeV
10⁴ electrons 0.4 MeV
10⁴ electrons 0.8 MeV
10⁴ electrons 1 MeV
10⁴ electrons 4 MeV

in GEANT4 by Sveta Biktemerova

Photons reaching FS

Evaluated upper limit ~4 ph/(m² ns) is approximatelly in order of 1% in comparison to photons which pass the detector and reach the FS from the standard UV BG of 500 ph/(m² ns sr). This leads to conclusion that electrons trapped in non disturbed magnetosphere do not affect the JEM-EUSO operational duty cycle significantly.

Disturbed magnetosphere case effect of trapped electrons

Preliminary conservative estimation

 based on increase of electrons Intensities estimation at different L-shells for different Kp indexes along ISS trajectory

Year	Total influence [%] ⁽¹⁾
1999	1.2
2000	1.4.
2001	0.9
2002	1.0
2003	2.7
2004	1.1
2005	1.1
2006	0.6
2007	0.4
2008	0.4
2009	0.1
2010	0.3
2011	0.5

(1) percents from all time on orbit

Conclusions

- GCR has not influence duty cycle/UV BG
- e⁻ influence to duty cycle in non disturbed magnetosphere is in order of few percents
- Disturbed magnetosphere till now preliminary conservative estimation, less than 1 percent

ISS vs. Tatiana 1 orbit - trapped e⁻

Tatiana 1 orbit - e⁻ Solar maximum

e— at Tatiana 1 orbit, SPENVIS AE—8 model

-180-150-120-90-60-30 0 30 60 90 120 150 180

e- at latiana i orbit, Smeinvis Ae-o modei

