
 JEM-EUSO International Meeting June 06-10 2011, Paris

Analysis and visualization of the fake
trigger events obtained by fast
simulation code.

Blahoslav Pastirčák, IEP SAS Košice

 Pavol Bobík, IEP SAS Košice

 Francesco Fenu, Tübingen

Kenji Shinozaki, RIKEN

Motivation and simulation conditions

ESAF

Standalone code written in C++ by Francesco Fenu

Source of background

Poisson distribution of average BG 500 ph/(m2 s sr)

PDM

PTT algorithm 2nd Level 1 Hz/PDM

LTT algorithm 3rd Level 1mHz/PDM

 40000 GTU/s

10^11 GTU/trigger

Code is fast, but since ton produce huge statistics we have to run parallel

Prepared and running on Kosice PC cluster

Computing facility – JEM-EUSO cluster

16 node Supermicro® SuperServer AS-1042G-MTF

Configuration of node :

- 4x Opteron 6134 (2,3GHz)

- 16GB RAM

- 600GB SATAII HDD (WD VelociRaptor)

2x master/disk server Supermicro® SuperServer AS-1042G-MTF

Configuration od server:

- 1x Opteron 6134 (2,3GHz)

- 16GB RAM

- 4x 2TB SATAII HDD (WD RE4)

All together:

CPU: 64 + 2 @ 2.3GHz

Cores: 512 + 16

RAM: 264 GB (4GB / CPU)

Disk space: 16x600GB + 8x2TB = 25,2TB

1

Computing facility – JEM-EUSO cluster

● full HW and OS/SW configuration ready on all nodes

● Fedora Core 14 1.2.5-2.fc14

● kernel 2.6.35.13-91.fc14.x86_64

● gcc 4.5.1-4

● disk space sharing by nfs

● ROOT 5.28/00, ESAF trunk, Geant4 9.4

● cluster ready for any user from JEM-EUSO collaboration

- to have an account, simply write email to bobik@saske.sk

● the infrastructure and computational facilities in Slovakia are supported by the project ITMS No.
26220120009, based on the supporting operational Research and development program financed from the
European Regional Development Fund.

1

mailto:bobik@saske.sk

The statistics

The full simulated statistics was 110*1.e9 GTUs (110 jobs with 1.e9 GTU)

= 1.1e11 GTU's => 1.1e11*2.5e-6 s = 2.75e5 s

Among them in 16 runs LTT_THIRD_OUT appeared and the full numbers of LTT

triggers in these files was 21500.

So the rate is 2.15e4/2.75e5 = 0.8e-1 Hz, which is not far from expected 0.1Hz

However, this result is for the integration threshold 145.

 Calculated in 3 weeks on part of cluster

 Has to be discussed with Mario, modified and prepared for massive simulations

Output

 The information of accumulated LTT triggers stored to ascii file in the 4 column format:

 row in EC (0-35) : column in EC (0-35) : time (0-30) : counts/pixel

 1 LTT trigger = 36x36x31 lines

Average size of the LTT output : 250 MB/ 1.e9 Gtu's

We reprocessed it to store like root ntuples: 10 MB/1.e9 GTU's

Configuration

 M36

BG = 2.1 ph/pix/GTU

PTT_integr = 43

LTT integration = 145

Background rate for M36 configuration

Visualization

Two SW approaches to analyze results:

- IDL 8.1

- ROOT

Plots of summary counts on all PDMs for 30 times run
No. 100 (ROOT)

Plots of summary counts on all PDMs for 30 times run
No.100 (IDL)

Counts on PDM with highest sum counts from
counts/pixel > 4 for 30 times – run No.100 (ROOT)

Counts on PDM with highest sum counts from
counts/pixel > 4 for 30 times – run No.100 (ROOT, glb)

Counts on PDM with highest sum counts from
counts/pixel > 4 for 30 times – run No.100 (IDL)

Plots from events, where sum counts of only
counts/pixel > 4 were the highest - run No.100 (ROOT)

Plots from events, where sum counts of only
counts/pixel > 4 were the highest - run No.100 (IDL)

Summary

● Checked trigger rates obtained from the code
are compatible with expectation

● Visualisation of the output don't show structures

at present level of analysis
● Significant problems with rnd generation

Open questions & Todo

● Continue analyse obtained LTT triggers
 - suggestions how to check light curves for only pixels
contributed to LTT

● Investigate random number generator
- rndm = rndm1 + 10^-6*rndm2 produce increased LTT rate

● Perform calculations for M64 configuration
 - agree and fix PTT and LTT integration thresholds

● Compare ESAF and fast code results
 - what is actual rate of computations speeds

	Snímka 1
	Snímka 2
	Snímka 3
	Snímka 4
	Snímka 5
	Snímka 6
	Snímka 7
	Snímka 8
	Snímka 9
	Snímka 10
	Snímka 11
	Snímka 12
	Snímka 13
	Snímka 14
	Snímka 15
	Snímka 16
	Snímka 17
	Snímka 18

