Fake trigger background simulation

- Blahoslav Pastirčák, Pavol Bobík,
- Franceso Fenu, Kenji Shinozaki

JEM-EUSO Simulation meeting, Madrid Spain, 26 - 30 March 2012

Outline

- Motivation
- SW and configuration
- Accumulated information
- Analysis, pattern recognition attempt

Motivation

 Aim of trigger is to detect the signal from real event among extremely high background (~10¹¹ counts/s/FS)

- Signal filtered on several levels reducing the trigger rate
- Organized in two main levels, basing on positions and time correlations of physical events compared to background

Outline of noise reduction capability.

Level		Rate of signals/triggers at PDM level	Rate of signals/triggers at FS level
PDM level trigger	Photon trigger	$\sim 9.2 \times 10^8 \text{ Hz}$	$\sim 1.4 \times 10^{11}$ Hz
	Counting trigger	$\sim 7.1 \times 10^5$ Hz	$\sim 1.1 \times 10^8$ Hz
	Persistency track trigger (PTT)	~7 Hz	$\sim 10^3 Hz$
PDM cluster level trigger (FS=144 PDM's) Linear track trigger (LTT)		~6.7 × 10 ⁻⁴ Hz	~0.1 Hz
Expected rate of cosmic ray events		~6.7 × 10 ⁻⁶ Hz	~10 ⁻³ Hz

Motivation

- Very high statistics of simulated background needed $\rightarrow 10^5$ events $\rightarrow 10^{14}$ GTU's
- Impossible to simulate by ESAF:
 - \rightarrow 10³ slower then used code
 - \rightarrow cannot be computed parallely (mem. share)
- Fast and standalone code written in C++ developed by Francseco Fenu

The code

- Trigger algorithm implemented (as in ESAF)
- One PDM simulated
- Persistency Track Trigger algorithm \rightarrow 1st level \rightarrow 1Hz/PDM
- Linear Track Trigger algorithm $\rightarrow 2^{nd}$ level $\rightarrow 1$ mHZ/PDM
- Background source \rightarrow Poisson distribution of average 500 photons (m⁻² s⁻¹ sr⁻¹) = 2.1 photons/pixel/GTU
- Code fast but since to produce huge statistics has to be run in parallel (on Kosice cluster)

JEM-EUSO Kosice cluster

- Actually used and available for also for collaboration 7*32 cores @ 2.3 Ghz; 25 TB upgrade in progress right now
- Fedora Core 14 1.2.5-2.fc14 kernel 2.6.35.13-91.fc14.x86_64 gcc 4.5.1-4
- NFS shared disk space (temporarily), RAID configuration in progress right now
- ROOT v32.00, ESAF trunk (less than 1 month), GEANT4 9.4

M36 Configuration

M36

- **BG = 2.1 ph/pix/GTU**
- **PTT_integr = 43**
- LTT integration = 145
- Consecutive GTU = 5
- Yellow pixel th = 4

- 1 PDM = 9 EC = 1296 pixel
- 1 EC = 4 x PMT = 144 pixel
- 1 PMT = M 36 = 36 pixel (6 x 6)

Stored information

- Two files written when thresholds reached:
- PTT_SECOND_OUT → (x,y,pers, ecid,counts)
 12x12x5 = 720 lines/pdm
- LTT_SECOND_OUT → (x,y,time,counts) 36x36x31 = 40196 lines/pdm
- Information for which PPT, LTT dumped (reached threshold)
- Analysis of only pixels contributed to LTT

Present statistics - M36

- 10¹² GTU's
 6 weeks simulation
- 12000 LTT triggers
 → 1mHz/PDM
- 750000 PTT triggers
 → 0.1 Hz/PDM

Random number generation

- Due to very high generated statistics possible problems with random number generation
- Previously 4 different types of rnd generation acording to predefined Poisson distributions investigated from ROOT investigated
- Folowing schema used for improving
- Check the random seeds -> succesfully follow Poisson

Random number generation

M64 config for simulations

- Modification of BG → scaled according (36/64)²
- PTT and LTT integration thresholds modification following obtained background rates for M64

Background rate M64 config

LTT threshold for M64

M64 config

Pattern recognition

- We have started to study pattern recognition on obtained result
- 1) Adaption of RobustModule.cc code prepared by Svetlana for ESAF
- 2) Finding fake patterens inonly randomly produced noise in 8x8 matrices – new student started this work

Summary, todo

- Checked trigger rates obtained from the code compatible with expectation
- No patterns at present level o statistics
- Improved random number generation OK
- The code modified for M64 configuration and prepared to start massive simulation
- Pattern recognition of the obtained data under study